Affiliation:
1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan
2. Electrical Engineering Unit, Tampere University, 33720 Tampere, Finland
Abstract
This article aims to realize the brushless operation of a wound rotor vernier machine (WRVM) by a third-harmonic field produced through stator auxiliary winding (X). In the conventional model, a third-harmonic current is generated by connecting a 4-pole armature and 12-pole excitation windings serially with a three-phase diode rectifier to develop a pulsating field in the airgap of a machine. However, in the proposed model, the ABC winding is supplied by a three-phase current source inverter, whereas the auxiliary winding (X) carries no current due to an open circuit. The fundamental MMF component developed in the machine airgap creates a four-pole stator field, while the third-harmonic MMF induces the harmonic current in the specialized rotor harmonic winding. The rotor on the other side contains the harmonic and the field windings connected through a full-bridge rectifier. The electromagnetic interaction of the stator and rotor fields generates torque. Due to the open-circuited winding pattern, the proposed machine results in a low torque ripple. A 2D model is designed using JMAG-Designer, and 2D field element analysis (FEA) is carried out to determine the output torque and machine’s efficiency. A comparative performance analysis of both the conventional and proposed topologies is discussed graphically. The quantitative analysis of the proposed topology shows better performance as compared to the recently developed third-harmonic-based brushless WRVM topology in terms of output torque and torque ripples.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献