Affiliation:
1. Vehicle Engineering Department, Hubei University of Automotive Technology, Shiyan 442002, China
2. Hubei Key Laboratory of Automotive Power Train and Electronic Control, Hubei University of Automotive Technology, Shiyan 442002, China
3. College of Electrical and New Energy, China Three Gorges University, Yichang 443000, China
Abstract
Intelligent decisions for autonomous lane-changing in vehicles have consistently been a focal point of research in the industry. Traditional lane-changing algorithms, which rely on predefined rules, are ill-suited for the complexities and variabilities of real-world road conditions. In this study, we propose an algorithm that leverages the deep deterministic policy gradient (DDPG) reinforcement learning, integrated with a long short-term memory (LSTM) trajectory prediction model, termed as LSTM-DDPG. In the proposed LSTM-DDPG model, the LSTM state module transforms the observed values from the observation module into a state representation, which then serves as a direct input to the DDPG actor network. Meanwhile, the LSTM prediction module translates the historical trajectory coordinates of nearby vehicles into a word-embedding vector via a fully connected layer, thus providing predicted trajectory information for surrounding vehicles. This integrated LSTM approach considers the potential influence of nearby vehicles on the lane-changing decisions of the subject vehicle. Furthermore, our study emphasizes the safety, efficiency, and comfort of the lane-changing process. Accordingly, we designed a reward and penalty function for the LSTM-DDPG algorithm and determined the optimal network structure parameters. The algorithm was then tested on a simulation platform built with MATLAB/Simulink. Our findings indicate that the LSTM-DDPG model offers a more realistic representation of traffic scenarios involving vehicle interactions. When compared to the traditional DDPG algorithm, the LSTM-DDPG achieved a 7.4% increase in average single-step rewards after normalization, underscoring its superior performance in enhancing lane-changing safety and efficiency. This research provides new ideas for advanced lane-changing decisions in autonomous vehicles.
Funder
Hubei Province key research and development project
Major science and technology project in Wuhan, Hubei Province
central government guided special projects for local scientific and technological development
Hubei University of Automotive Technology PhD Fund Project
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献