Matrix Information Geometry for Signal Detection via Hybrid MPI/OpenMP

Author:

Feng ShengORCID,Hua XiaoqiangORCID,Wang Yongxian,Lan Qiang,Zhu Xiaoqian

Abstract

The matrix information geometric signal detection (MIGSD) method has achieved satisfactory performance in many contexts of signal processing. However, this method involves many matrix exponential, logarithmic, and inverse operations, which result in high computational cost and limits in analyzing the detection performance in the case of a high-dimensional matrix. To address these problems, in this paper, a high-performance computing (HPC)-based MIGSD method is proposed, which is implemented using the hybrid message passing interface (MPI) and open multiple processing (OpenMP) techniques. Specifically, the clutter data are first modeled as a Hermitian positive-definite (HPD) matrix and mapped into a high-dimensional space, which constitutes a complex Riemannian manifold. Then, the task of computing the Riemannian distance on the manifold between the sample data and the geometric mean of these HPD matrices is assigned to each MPI process or OpenMP thread. Finally, via comparison with a threshold, the signal is identified and the detection probability is calculated. Using this approach, we analyzed the effect of the matrix dimension on the detection performance. The experimental results demonstrate the following: (1) parallel computing can effectively optimize the MIGSD method, which substantially improves the practicability of the algorithm; and (2) the method achieves superior detection performance under a higher dimensional HPD matrix.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3