Direct Measurements of Bed Shear Stress under Swash Flows on Steep Laboratory Slopes at Medium to Prototype Scales

Author:

Howe ,Blenkinsopp ,Turner ,Baldock ,Puleo

Abstract

Robust measurements of bed shear stress under wave runup flows are necessary to inform beachface sediment transport modelling. In this study, direct measurements of swash zone bed shear stress were obtained in medium and prototype-scale laboratory experiments on steep slopes. Peak shear stresses coincided with the arrival of uprush swash fronts and high-resolution measurement of swash surface profiles indicated a consistently seaward sloping swash surface with minimal evidence of a landward sloping swash front. The quadratic stress law was applied to back-calculate time-varying friction factors, which were observed to decrease with increasing Reynolds number on smooth slopes, consistent with theory for steady flows. Additionally, friction factors remained relatively constant throughout the swash cycle (except around flow reversal), with a variation of approximately ±20% from the mean value and with only small differences between uprush and backwash. Measured friction factors were observed to be larger than expected when plotted on the Moody or wave friction diagram for a given Reynolds number and relative roughness, consistent with previous field and laboratory studies at various scales.

Funder

Australian Research Council

National Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A logarithmic bottom boundary layer model for the unsteady and non-uniform swash flow;Coastal Engineering;2022-03

2. Measurement of Turbulent Flows and Shear Stress on Open Channels;IOP Conference Series: Earth and Environmental Science;2021-08-01

3. Sediment Transport;Reference Module in Earth Systems and Environmental Sciences;2021

4. Field measurements of shear stress and friction in the surf zone;Earth Surface Processes and Landforms;2020-11-17

5. The Effect of Habitat Structure Boulder Spacing on Near-Bed Shear Stress and Turbulent Events in a Gravel Bed Channel;Water;2020-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3