Design and Experiment of a Plateau Data-Gathering AUV

Author:

Xu HaoORCID,Zhang Guo-Cheng,Sun Yu-Shan,Pang Shuo,Ran Xiang-Rui,Wang Xiang-Bin

Abstract

The design, control, and implementation of an autonomous underwater vehicle (AUV) for collecting hydrological information from plateau rivers and lakes are presented in this paper. The hardware and software structures of the control system were previously described. A novel sliding mode controller (SMC) with combinational reaching law of vertical hovering motion is proposed to improve the robustness and stability. The S-plane control, a nonlinear controller with little parameters, is used in the horizontal motion. Besides, the navigation strategy based on the dead-reckoning algorithm, a path tracking based on the light-of-sight (LOS) algorithm, and a control allocation strategy considering saturation are present. Finally, experiments were performed in a tank and in a river in the Qinghai–Tibet Plateau to prove the feasibility and reliability of the AUV system.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small Modular AUV Based on 3D Printing Technology: Design, Implementation and Experimental Validation;Brodogradnja;2024-01-01

2. Research on Fault-tolerant Control Allocation Technology for X-rudder UUV;Journal of Physics: Conference Series;2023-12-01

3. A review of underwater vehicle motion stability;Ocean Engineering;2023-11

4. Seawater Temperature Profile Reconstruction Based on Transfer Learning;2023 6th International Conference on Information Communication and Signal Processing (ICICSP);2023-09-23

5. Experimental Investigation of High Speed Cross-Domain Vehicles with Hydrofoil;Journal of Marine Science and Engineering;2023-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3