Effects of Different Temperatures on the Softening of Red-Bed Sandstone in Turbulent Flow

Author:

Liu ,He ,Cui ,Zhou

Abstract

The rates of chemical reactions are highly dependent on temperature, meaning that the actual geological rock mass is affected by different temperatures. Only when the temperature effect is considered can the mechanism of the influence of temperature on the interaction between water and rock be further understood. It was found that the condition of turbulent flow is more likely to promote the softening of red-bed sandstone than the conditions of laminar flow and static water in an experimental study on the softening effects of different flow patterns on red-bed sandstone. Therefore, based on a multi-functional self-circulating open channel hydraulic test system, this paper designs and completes equal volume saturated tests of red-bed sandstone at low temperature (1 °C), medium temperature (23 °C), and high temperature (45 °C) under the turbulent conditions of three equal temperature gradients. The chemical action of the circulating solution in water flow at different temperatures, the propagation of micro-cracks in rock and the changes in mechanical indexes are discussed. The influence laws and mechanisms of the different temperatures on the softening of red-bed sandstone in turbulent flow are revealed. The results show that low-temperature flow can inhibit the softening of red-bed sandstone in the range of 1–45 °C. With the increase in water flow temperature, the development degrees of micro-structures and the mechanical damage of the corresponding rock become more notable. That is, temperature affects the physical and chemical water–rock interactions and then changes the internal structure of rock, thus affecting the softening and failure processes of red-bed sandstone. The study provides a theoretical basis for the further investigation of the softening laws and mechanisms of other red layered soft rocks by temperature under turbulent conditions.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3