Accuracy Analysis of International Reference Ionosphere 2016 and NeQuick2 in the Antarctic

Author:

Guo Zihuai,Yao YibinORCID,Kong Jian,Chen Gang,Zhou ChenORCID,Zhang Qi,Shan Lulu,Liu Chen

Abstract

Global navigation satellite system (GNSS) can provide dual-frequency observation data, which can be used to effectively calculate total electron content (TEC). Numerical studies have utilized GNSS-derived TEC to evaluate the accuracy of ionospheric empirical models, such as the International Reference Ionosphere model (IRI) and the NeQuick model. However, most studies have evaluated vertical TEC rather than slant TEC (STEC), which resulted in the introduction of projection error. Furthermore, since there are few GNSS observation stations available in the Antarctic region and most are concentrated in the Antarctic continent edge, it is difficult to evaluate modeling accuracy within the entire Antarctic range. Considering these problems, in this study, GNSS STEC was calculated using dual-frequency observation data from stations that almost covered the Antarctic continent. By comparison with GNSS STEC, the accuracy of IRI-2016 and NeQuick2 at different latitudes and different solar radiation was evaluated during 2016–2017. The numerical results showed the following. (1) Both IRI-2016 and NeQuick2 underestimated the STEC. Since IRI-2016 utilizes new models to represent the F2-peak height (hmF2) directly, the IRI-2016 STEC is closer to GNSS STEC than NeQuick2. This conclusion was also confirmed by the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) occultation data. (2) The differences in STEC of the two models are both normally distributed, and the NeQuick2 STEC is systematically biased as solar radiation increases. (3) The root mean square error (RMSE) of the IRI-2016 STEC is smaller than that of the NeQuick2 model, and the RMSE of the two modeling STEC increases with solar radiation intensity. Since IRI-2016 relies on new hmF2 models, it is more stable than NeQuick2.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3