Long-Chain Polyunsaturated Fatty Acids, Homocysteine at Birth and Fatty Acid Desaturase Gene Cluster Polymorphisms Are Associated with Children’s Processing Speed up to Age 9 Years

Author:

Campoy CristinaORCID,Azaryah Hatim,Torres-Espínola Francisco J.ORCID,Martínez-Zaldívar Cristina,García-Santos José Antonio,Demmelmair HansORCID,Haile Gudrun,Rzehak PeterORCID,Koletzko BertholdORCID,Györei Eszter,Décsi Tamas,Ramírez-Tortosa María del CarmenORCID,Reischl Eva,Molloy Anne M.ORCID,Luna Juan de Dios,Pérez-García MiguelORCID

Abstract

Both pre- and early postnatal supplementation with docosahexaenoic acid (DHA), arachidonic acid (AA) and folate have been related to neural development, but their long-term effects on later neural function remain unclear. We evaluated the long-term effects of maternal prenatal supplementation with fish-oil (FO), 5-methyltetrahydrofolate (5-MTHF), placebo or FO + 5-MTHF, as well as the role of fatty acid desaturase (FADS) gene cluster polymorphisms, on their offspring’s processing speed at later school age. This study was conducted in NUHEAL children at 7.5 (n = 143) and 9 years of age (n = 127). Processing speed tasks were assessed using Symbol Digit Modalities Test (SDMT), Children Color Trails Test (CCTT) and Stroop Color and Word Test (SCWT). Long-chain polyunsaturated fatty acids, folate and total homocysteine (tHcy) levels were determined at delivery from maternal and cord blood samples. FADS and methylenetetrahydrofolate reductase (MTHFR) 677 C > T genetic polymorphisms were analyzed. Mixed models (linear and logistic) were performed. There were significant differences in processing speed performance among children at different ages (p < 0.001). The type of prenatal supplementation had no effect on processing speed in children up to 9 years. Secondary exploratory analyses indicated that children born to mothers with higher AA/DHA ratio at delivery (p < 0.001) and heterozygotes for FADS1 rs174556 (p < 0.05) showed better performance in processing speed at 9 years. Negative associations between processing speed scores and maternal tHcy levels at delivery were found. Our findings suggest speed processing development in children up to 9 years could be related to maternal factors, including AA/DHA and tHcy levels, and their genetic background, mainly FADS polymorphism. These considerations support that maternal prenatal supplementation should be quantitatively adequate and individualized to obtain better brain development and mental performance in the offspring.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3