A V-Shaped Microcantilever Sensor Based on a Gap Method for Real-Time Detection of E. coli Bacteria

Author:

Fathy Jino,Lai YongjunORCID

Abstract

This paper presents a dynamic-mode microcantilever sensor based on a gap method. The sensor has a V-shaped microcantilever and a fixed structure at a distance of 2 µm from its free end. The microcantilever is excited by applying an ac electric potential (3 Vp) to its piezoelectric pads and vibrates at its fundamental resonant frequency. An independent ac electric potential (200 kHz, 15 Vpp) is applied to the fixed structure. This creates a non-uniform electric field with its maxima at the gap and exerts a dielectrophoresis (DEP) force. The DEP force attracts and adsorbs the E. coli bacteria to the cantilever edge at the gap. The binding of the bacteria to the cantilever creates a shift in the resonant frequency of the microcantilever sensor, which is detected by a laser vibrometer. The real-time detection of E. coli bacteria samples, diluted in distilled water, was performed for concentrations of 105–103 cells/mL and the real-time frequency shifts were −2264.3 to −755 Hz in 4 min, respectively. The tests were expanded to study the effect of the electric potential amplitude (10, 12, 15 Vpp) and higher frequency shifts were observed for higher amplitudes.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3