FPGA Correlator for Applications in Embedded Smart Devices

Author:

Moore Christopher H.,Lin Wei

Abstract

Correlation has a variety of applications that require signal processing. However, it is computationally intensive, and software correlators require high-performance processors for real-time data analysis. This is a challenge for embedded devices because of the limitation of computing resources. Hardware correlators that use Field Programmable Gate Array (FPGA) technology can significantly boost computational power and bridge the gap between the need for high-performance computing and the limited processing power available in embedded devices. This paper presents a detailed FPGA-based correlator design at the register level along with the open-source Very High-Speed Integrated Circuit Hardware Description Language (VHDL) code. It includes base modules for linear and multi-tau correlators of varying sizes. Every module implements a simple and unified data interface for easy integration with standard and publicly available FPGA modules. Eighty-lag linear and multi-tau correlators were built for validation of the design. Three input data sets—constant signal, pulse signal, and sine signal—were used to test the accuracy of the correlators. The results from the FPGA correlators were compared against the outputs of equivalent software correlators and validated with the corresponding theoretical values. The FPGA correlators returned results identical to those from the software references for all tested data sets and were proven to be equivalent to their software counterparts. Their computation speed is at least 85,000 times faster than the software correlators running on a Xilinx MicroBlaze processor. The FPGA correlator can be easily implemented, especially on System on a Chip (SoC) integrated circuits that have processor cores and FPGA fabric. It is the ideal component for device-on-chip solutions in biosensing.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3