Application of Machine Learning Algorithms to Describe the Characteristics of Dairy Sheep Lactation Curves

Author:

Guevara Lilian1ORCID,Castro-Espinoza Félix2ORCID,Fernandes Alberto Magno1,Benaouda Mohammed3,Muñoz-Benítez Alfonso Longinos4,del Razo-Rodríguez Oscar Enrique4,Peláez-Acero Armando4ORCID,Angeles-Hernandez Juan Carlos4ORCID

Affiliation:

1. Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-620, Brazil

2. Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca 42184, Mexico

3. Institut Agro Dijon, 26 Bd Dr Petitjean, 21079 Dijon, France

4. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo 43600, Mexico

Abstract

In recent years, machine learning (ML) algorithms have emerged as powerful tools for predicting and modeling complex data. Therefore, the aim of this study was to evaluate the prediction ability of different ML algorithms and a traditional empirical model to estimate the parameters of lactation curves. A total of 1186 monthly records from 156 sheep lactations were used. The model development process involved training and testing models using ML algorithms. In addition to these algorithms, lactation curves were also fitted using the Wood model. The goodness of fit was assessed using correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), relative absolute error (RAE), and relative root mean square error (RRSE). SMOreg was the algorithm with the best estimates of the characteristics of the sheep lactation curve, with higher values of r compared to the Wood model (0.96 vs. 0.68) for the total milk yield. The results of the current study showed that ML algorithms are able to adequately predict the characteristics of the lactation curve, using a relatively small number of input data. Some ML algorithms provide an interpretable architecture, which is useful for decision-making at the farm level to maximize the use of available information.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference36 articles.

1. Appropriate Mathematical Models for Describing the Complete Lactation of Dairy Sheep;Pollott;Anim. Sci.,2000

2. Physiology of Milk Production and Modelling of the Lactation Curve;Pollott;CABI Rev.,2021

3. Prediction of First Lactation 305-Day Milk Yield in Karan Fries Dairy Cattle Using ANN Modeling;Sharma;Appl. Soft Comput.,2007

4. Prediction of Lifetime Milk Production Using Artificial Neural Network in Sahiwal Cattle;Gandhi;Indian J. Anim. Sci.,2009

5. Comparative Efficiency of Artificial Neural Networks and Multiple Linear Regression Analysis for Prediction of First Lactation 305-Day Milk Yield in Sahiwal Cattle;Dongre;Livest. Sci.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3