Time-Aware and Feature Similarity Self-Attention in Vessel Fuel Consumption Prediction

Author:

Park Hyun JoonORCID,Lee Min SeokORCID,Park Dong IlORCID,Han Sung WonORCID

Abstract

An accurate vessel fuel consumption prediction is essential for constructing a ship route network and vessel management, leading to efficient sailings. Besides, ship data from monitoring and sensing systems accelerate fuel consumption prediction research. However, the ship data consist of three properties: sequential, irregular time interval, and feature importance, making the predicting problem challenging. In this paper, we propose Time-aware Attention (TA) and Feature-similarity Attention (FA) applied to bi-directional Long Short-Term Memory (LSTM). TA acquires time importance by nonlinear function from irregular time intervals in each sequence and emphasizes data depending on the importance. FA emphasizes data based on similarities of features in the sequence by estimating feature importance with learnable parameters. Finally, we propose the ensemble model of TA and FA-based BiLSTM. The ensemble model, which consists of fully connected layers, is capable of simultaneously capturing different properties of ship data. The experimental results on ship data showed that the proposed model improves the performance in predicting fuel consumption. In addition to model performance, visualization results of attention maps and feature importance help to understand data properties and model characteristics.

Funder

Korea TechnoComplex Foundation Grant

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3