Analysis of Clinical Profiles, Deformities, and Plantar Pressure Patterns in Diabetic Foot Syndrome

Author:

Giacomozzi ClaudiaORCID,Lullini Giada,Leardini AlbertoORCID,Caravaggi PaoloORCID,Ortolani MaurizioORCID,Marchesini GiulioORCID,Baccolini Luca,Berti Lisa

Abstract

Diabetic foot syndrome refers to heterogeneous clinical and biomechanical profiles, which render predictive models unsatisfactory. A valuable contribution may derive from identification and descriptive analysis of well-defined subgroups of patients. Clinics, biology, function, gait analysis, and plantar pressure variables were assessed in 78 patients with diabetes. In 15 of them, the 3D architecture of the foot bones was characterized by using weight-bearing CT. Patients were grouped by diabetes type (T1, T2), presence (DN) or absence (DNN) of neuropathy, and obesity. Glycated hemoglobin (HbA1c) and plantar lesions were monitored during a 48-month follow-up. Statistical analysis showed significant differences between the groups for at least one clinical (combined neuropathy score, disease duration, HbA1c), biological (age, BMI), functional (joint mobility, foot alignment), or biomechanical (regional peak pressure, pressure-time integral, cadence, velocity) variable. Twelve patients ulcerated during follow-up (22 lesions in total), distributed in all groups but not in the DNN T2 non-obese group. These showed biomechanical alterations, not always occurring at the site of lesion, and HbA1c and neuropathy scores higher than the expected range. Three of them, who also had weight-bearing CT analysis, showed >40% of architecture parameters outside the 95%CI. Appropriate grouping and profiling of patients based on multi-instrumental clinical and biomechanical analysis may help improve prediction modelling and management of diabetic foot syndrome.

Funder

Ministero della Salute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3