Research on Residual Life Estimation Method for KMN Steel Based on Nonlinear Ultrasonic Testing

Author:

Wang PengfeiORCID,Wang Weiqiang,Zheng Sanlong,Gao Zengliang

Abstract

The testing of KMN steel bending fatigue with different cycles was carried out using a nonlinear ultrasonic detector to obtain its nonlinear coefficient. The experimental results show that the nonlinear coefficient first increases and then decreases with an increase in fatigue cycles. The relationship between the propagation of the micro-cracks inside the material and the nonlinear coefficient was researched by microscopic analysis in the dangerous position of the specimens. As the fatigue cycles increase, the microstructure of the specimen gradually deteriorates and cracks occur, which proves that nonlinear ultrasonic detection can be used to characterize the initiation of micro-cracks in the early fatigue stages of the material and that the nonlinear coefficient β of the material can be used to reflect the fatigue damage degree and fatigue life of the interior of the material. An analysis of the numerical statistics of the fatigue cracks inside the specimens was carried out, and the extreme value of fatigue cracks was calculated using the Gumbel distribution. An empirical formula for the nonlinear coefficient and crack growth size of KMN steel was established and then a method for estimating the fatigue life of KMN steel based on nonlinear ultrasonic testing was proposed.

Funder

National Natural Science Foundation of China

Zhejiang Province Public Welfare Technology Application Research Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3