Wireless Sensor Networks for Enabling Smart Production Lines in Industry 4.0

Author:

De Beelde BrechtORCID,Plets DavidORCID,Joseph WoutORCID

Abstract

With the deployment of data-driven assembly and production factories, challenges arise in sensor data acquisition and gathering. Different wireless technologies are currently used for transferring data, each with different advantages and constraints. In this paper, we present a hybrid network architecture for providing Quality of Service (QoS) in an industrial environment where guaranteed minimal data rates and maximal latency are of utmost importance for controlling devices and processes. The location of the access points (APs) is determined during the initial network-planning action, together with physical parameters such as frequency, transmit power, and modulation and coding schemes. Instead of performing network-planning just once before the network rollout, the network is monitored continuously by adding telemetry data to the frame header of all data streams, and the network is automatically reconfigured in real-time if the requirements are not met. By not using maximum transmit powers during the initial roll-out, more APs are needed, but coverage is guaranteed when new obstructions such as metallic racks or machinery are added. It is found that decreasing the transmit power by 6 dB gives the best trade-off between the number of required APs and network robustness. The proposed architecture is validated via simulations and via a proof-of-concept setup.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3