Abstract
The assessment of metallic materials used in power plants’ piping represents a big challenge due to the thermal transients and the environmental conditions to which they are exposed. At present, a lack of information related to degradation mechanisms in structures and materials is covered by safety factors in its design, and in some cases, the replacement of components is prescribed after a determined period of time without knowledge of the true degree of degradation. In the collaborative project “Microstructure-based assessment of maximum service life of nuclear materials and components exposed to corrosion and fatigue (MibaLeb)”, a methodology for the assessment of materials’ degradation is being developed, which combines the use of NDT techniques for materials characterization, an optimized fatigue lifetime analysis using short time evaluation procedures (STEPs) and numerical simulations. In this investigation, the AISI 347 (X6CrNiNb18-10) is being analyzed at different conditions in order to validate the methodology. Besides microstructural analysis, tensile and fatigue tests, all to characterize the material, a pressurized hot water pipe exposed to a series of flow conditions will be evaluated in terms of full-scale testing as well as prognostic evaluation, where the latter will be based on the materials’ data generated, which should prognose changes in the material’s condition, specifically in a pre-cracked stage. This paper provides an overview of the program, while the more material’s related aspects are presented in the subsequent paper.
Funder
Federal Ministry for Economic Affairs and Energy
Deutsche Forschungsgemeinschaft
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献