Modelling of the Motion and Interaction of a Droplet of an Inkjet Printing Process with Physically Treated Polymers Substrates

Author:

Tofan Tim,Jasevičius Raimondas

Abstract

This study examines the effect of energetic surface treatment on the adhesion strength of high-density polyethylene (HDPE), polypropylene (PP) and polyethylene terephthalate (PET) substrates. The purpose of this work is to determine the surface wettability of polymers suitable for food contact. These plastics have been treated with various pre-treatment methods to improve surface tension and good adhesion for inkjet printing and avoid any visual changes. It is important to determine the adhesion of the ink to the polymer surface to improve post-consumer recycling. Digital inks have been tested on various treated plastics to analyse coating properties and adhesion forces in accordance with DIN ISO 2409 standards. The impact of the inkjet droplet on the treated and non-treated surface was also investigated using the COMSOL computer simulation software.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Handbook of Adhesives and Sealants;Petrie,2007

2. Adhesion performance of UHMWPE after different surface modification techniques

3. Influence of surface roughness on print quality on digitally printed self adhesive foils;Novaković;J. Print Media Technol. Res.,2013

4. Surface Treatments for Inkjet Printing onto a PTFE-Based Substrate for High Frequency Applications

5. Modification of polypropylene surfaces by flame treatment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3