Experimental Validation of a Gyroscope Wave Energy Converter for Autonomous Underwater Vehicles

Author:

Pei Zhongcai,Jing HaoORCID,Tang ZhiyongORCID,Fu Yulan

Abstract

Power technology has long been the main problem that has plagued the realization of ocean exploration by autonomous underwater vehicles (AUVs). This paper introduces a new wave energy conversion device for AUV, which is sealed inside a closed floating body to avoid interaction with the marine environment. The system uses the gyroscopic effect to continuously convert the pitching motion of waves into electrical energy through flywheel rotation, and thus theoretically extend the endurance time of AUVs. In this paper, a mathematical model of the power generation device is established, and the effects caused by different parameters on the system behavior and energy output are analyzed. In order to reduce the cost of experiments, the energy conversion device is installed on an experimental platform that can simulate wave motion to observe its energy generation performance. The experimental results show that the established mathematical model can accurately reflect the real behavior of the power generation device on the platform under different wave conditions, and the energy output error is only 9.91%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Progress on Built-in Wave Energy Converters: A Review;Journal of Marine Science and Engineering;2024-07-13

2. Technology, Geometry, Performance and Challenges in Wave Energy Converters;Highlights in Science, Engineering and Technology;2023-07-04

3. Gyroscopic wave energy converter with a self-accelerating rotor in WEC-glider;Ocean Engineering;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3