Consistency Analysis and Accuracy Assessment of Eight Global Forest Datasets over Myanmar

Author:

Xing Huaqiao,Niu Jingge,Liu Chang,Chen Bingyao,Yang Shiyong,Hou Dongyang,Zhu Linye,Hao Wenjun,Li Cansong

Abstract

Accurate and up-to-date forest monitoring plays a significant role in the country’s society and economy. Many open-access global forest datasets can be used to analyze the forest profile of countries around the world. However, discrepancies exist among these forest datasets due to their specific classification systems, methodologies, and remote sensing data sources, which makes end-users difficult to select an appropriate dataset in different regions. This study aims to explore the accuracy, consistency, and discrepancies of eight widely-used forest datasets in Myanmar, including Hansen2010, CCI-LC2015, FROM-GLC2015/2017, FROM-GLC10, GLC-FCS2015/2020, and GlobeLand30-2020. Firstly, accuracy assessment is conducted by using 934 forest and non-forest samples with four different years. Then, spatial consistency of these eight datasets is compared in area and spatial distribution. Finally, the factors influencing the spatial consistency are analyzed from the aspects of terrain and climate. The results indicate that in Myanmar the forest area derived from GlobeLand30 has the best accuracy, followed by FROM-GLC10 and FROM-GLC2017. The eight datasets differ in spatial detail, with the mountains of northern Myanmar having the highest consistency and the seaward areas of southwestern Myanmar having the highest inconsistency, such as Rakhine and the Ayeyarwady. In addition, it is found that the spatial consistency of the eight datasets is closely related to the terrain and climate. The highest consistency among the eight datasets is found in the range of 1000–3500 m above sea level and 26°–35° slope. In the subtropical highland climate (Cwb) zone, the percentage of complete consistency among the eight datasets is as high as 60.62%, which is the highest consistency among the six climatic zones in Myanmar. Therefore, forest mapping in Myanmar should devote more effort to low topography, seaward areas such as border states like Rakhine, Irrawaddy, Yangon, and Mon. This is because these areas have complex and diverse landscape types and are prone to confusion between forest types (e.g., grassland, shrub, and cropland). The approach can also be applied to other countries, which will help scholars to select the most suitable forest datasets in different regions for analysis, thus providing recommendations for relevant forest policies and planning in different countries.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3