Analysis of Sea Storm Events in the Mediterranean Sea: The Case Study of 28 December 2020 Sea Storm in the Gulf of Naples, Italy

Author:

Fortelli AlbertoORCID,Fedele AlessandroORCID,De Natale GiuseppeORCID,Matano FabioORCID,Sacchi MarcoORCID,Troise ClaudiaORCID,Somma RenatoORCID

Abstract

The coastline of the Gulf of Naples, Italy, is characterized by a series of infrastructures of strategic importance, including touristic and commercial ports between Pozzuoli to Sorrento, main roads, railways, and urban areas. Furthermore, the Gulf of Naples hosts an intense traffic of touristic and commercial maritime routes. The risk associated with extreme marine events is hence very significant over this marine and coastal area. On 28 December 2020, the Gulf of Naples was hit by an extreme sea storm, with severe consequences. This study focuses on the waterfront area of Via Partenope, where the waves overrun the roadway, causing massive damage on coastal seawall, road edges, and touristic structures (primarily restaurants). Based on the analysis of the meteorological evolution of the sea storm and its effects on the waterfront, we suggest that reflective processes induced on the sea waves by the tuff cliffs at the base of Castel dell’Ovo had an impact in enhancing the local-scale waves magnitude. This caused in turn severe flooding of the roadway and produced widespread damage along the coast. The analysis of the event of 28 December 2020, also suggests the need of an effective mitigation policy in the management of coastal issues induced by extreme sea storm events. Wind-based analysis and prediction of the sea wave conditions are currently discussed in the literature; however, critical information on wave height is often missing or not sufficient for reliable forecasting. In order to improve our ability to forecast the effects of sea storm events on the coastline, it is necessary to analyze all the components of the coastal wave system, including wave diffraction and reflection phenomena and the tidal change. Our results suggest in fact that only an integrated approach to the analysis of all the physical and anthropic components of coastal system may provide a correct base of information for the stakeholders to address coastal zone planning and protection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3