A Data Augmentation Method for Skeleton-Based Action Recognition with Relative Features

Author:

Chen JunjieORCID,Yang Wei,Liu Chenqi,Yao LeiyueORCID

Abstract

In recent years, skeleton-based human action recognition (HAR) approaches using convolutional neural network (CNN) models have made tremendous progress in computer vision applications. However, using relative features to depict human actions, in addition to preventing overfitting when the CNN model is trained on a few samples, is still a challenge. In this paper, a new motion image is introduced to transform spatial-temporal motion information into image-based representations. For each skeleton sequence, three relative features are extracted to describe human actions. The three relative features are consisted of relative coordinates, immediate displacement, and immediate motion orientation. In particular, the relative coordinates introduced in our paper not only depict the spatial relations of human skeleton joints but also provide long-term temporal information. To address the problem of small sample sizes, a data augmentation strategy consisting of three simple but effective data augmentation methods is proposed to expand the training samples. Because the generated color images are small in size, a shallow CNN model is suitable to extract the deep features of the generated motion images. Two small-scale but challenging skeleton datasets were used to evaluate the method, scoring 96.59% and 97.48% on the Florence 3D Actions dataset and UTkinect-Action 3D dataset, respectively. The results show that the proposed method achieved a competitive performance compared with the state-of-the-art methods. Furthermore, the augmentation strategy proposed in this paper effectively solves the overfitting problem and can be widely adopted in skeleton-based action recognition.

Funder

Scientific and Technological Projects of the Nanchang Science and Technology Bureau;National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3