Abstract
This paper proposes a method to experimentally identify the main modal parameters, i.e., natural frequencies and damping ratios, of an aerostatic spindle for printed board circuit drilling. A variety of methods is applied to the impulse-response function of the spindle in the presence of zero rotational speed and different supply pressures. Moreover, the paper describes the non-linear numerical model of the spindle, which consists of a four-degree-of-freedom (DOF) rigid and unsymmetrical rotor supported by two aerostatic bearings. The main goal of the work is to validate the developed non-linear numerical model through the proposed identification procedure and the performed experimental tests. The comparison proves satisfactory, and the possible sources of uncertainty are conjectured.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献