Author:
Lu Shanshuai,Li Congling,Liu Rui,Lv Aifeng
Abstract
Particulate matter (PM), composed of tiny solids and liquid droplets in polluted air, poses a serious threat to human health. Traditional air filters usually cause secondary pollution due to their poor degradability. Here, shellac, as an environmentally friendly natural organic material, was successfully applied to fabricate biodegradable air filters. Since pure shellac fiber shows poor mechanical properties and bad light transmittance, we then introduced a small amount of polyvinylpyrrolidone (PVP) in the shellac solution to prepare highly efficient air filter membranes by the electrospinning method. The prepared PVP-assisted shellac nanofiber membrane (P-Shellac FME) demonstrated improved filtration efficiencies as high as 95% and 98% for PM2.5 and PM10, respectively. The P-Shellac FME also showed good stability, with filtration efficiencies still above 90% and 95% for PM2.5 and PM10 even after six hours of air filtering under high PM concentrations. The pressure drop going through the filter was only 101 Pa, which is also comparable to the value of 76 Pa obtained using commercial polypropylene nanofibers (PP nanofibers, peeled off from the surgical mask), indicating good air permeability of P-Shellac FME. Additionally, P-Shellac FME also showed the advantages of translucence, biodegradability, improved mechanical properties, and low cost. We believe that the P-Shellac FME will make a significant contribution in the application of air filtration.
Funder
National Natural Science Foundation of China
the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献