Detection Based on Crack Key Point and Deep Convolutional Neural Network

Author:

Wang DejiangORCID,Cheng Jianji,Cai Honghao

Abstract

Based on the features of cracks, this research proposes the concept of a crack key point as a method for crack characterization and establishes a model of image crack detection based on the reference anchor points method, named KP-CraNet. Based on ResNet, the last three feature layers are repurposed for the specific task of crack key point feature extraction, named a feature filtration network. The accuracy of the model recognition is controllable and can meet both the pixel-level requirements and the efficiency needs of engineering. In order to verify the rationality and applicability of the image crack detection model in this study, we propose a distribution map of distance. The results for factors of a classical evaluation such as accuracy, recall rate, F1 score, and the distribution map of distance show that the method established in this research can improve crack detection quality and has a strong generalization ability. Our model provides a new method of crack detection based on computer vision technology.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3