Advanced Omics and Radiobiological Tissue Archives: The Future in the Past

Author:

Azimzadeh OmidORCID,Gomolka Maria,Birschwilks Mandy,Saigusa Shin,Grosche BerndORCID,Moertl Simone

Abstract

Archival formalin-fixed, paraffin-embedded (FFPE) tissues and their related diagnostic records are an invaluable source of biological information. The archival samples can be used for retrospective investigation of molecular fingerprints and biomarkers of diseases and susceptibility. Radiobiological archives were set up not only following clinical performance such as cancer diagnosis and therapy but also after accidental and occupational radiation exposure events where autopsies or cancer biopsies were sampled. These biobanks provide unique and often irreplaceable materials for the understanding of molecular mechanisms underlying radiation-related biological effects. In recent years, the application of rapidly evolving “omics” platforms, including transcriptomics, genomics, proteomics, metabolomics and sequencing, to FFPE tissues has gained increasing interest as an alternative to fresh/frozen tissue. However, omics profiling of FFPE samples remains a challenge mainly due to the condition and duration of tissue fixation and storage, and the extraction methods of biomolecules. Although biobanking has a long history in radiation research, the application of omics to profile FFPE samples available in radiobiological archives is still young. Application of the advanced omics technologies on archival materials provides a new opportunity to understand and quantify the biological effects of radiation exposure. These newly generated omics data can be well integrated into results obtained from earlier experimental and epidemiological analyses to shape a powerful strategy for modelling and evaluating radiation effects on health outcomes. This review aims to give an overview of the unique properties of radiation biobanks and their potential impact on radiation biology studies. Studies recently performed on FFPE samples from radiobiology archives using advanced omics are summarized. Furthermore, the compatibility of archived FFPE tissues for omics analysis and the major challenges that lie ahead are discussed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3