Abstract
Canonical correlation analysis (CCA) has been used for the steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) for a long time. However, the reference signal of CCA is relatively simple and lacks subject-specific information. Moreover, over-fitting may occur when a short time window (TW) length was used in CCA. In this article, an optimized L1-regularized multiway canonical correlation analysis (L1-MCCA) is combined with a support vector machine (SVM) to overcome the aforementioned shortcomings in CCA. The correlation coefficients obtained by L1-MCCA were transferred into a particle-swarm-optimization (PSO)-optimized support vector machine (SVM) classifier to improve the classification accuracy. The performance of the proposed method was evaluated and compared with the traditional CCA and power spectral density (PSD) methods. The results showed that the accuracy of the L1-MCCA-PSO-SVM was 96.36% and 98.18% respectively when the TW lengths were 2 s and 6 s. This accuracy is higher than that of the traditional CCA and PSD methods.
Funder
Natural Science Foundation of Beijing, China
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献