Common-Ground Photovoltaic Inverters for Leakage Current Mitigation: Comparative Review

Author:

Gaafar Mahmoud A.ORCID,Orabi MohamedORCID,Ibrahim Ahmed,Kennel Ralph,Abdelrahem MohamedORCID

Abstract

In photovoltaic systems, parasitic capacitance is often formed between PV panels and the ground. Because of the switching nature of PV converters, a high-frequency voltage is usually generated over these parasitic capacitances; this, in turn, can result in a common-mode current known as leakage current. This current can badly reach a high value if a resonance circuit is excited through the PV’s parasitic capacitance and the converter’s inductive components. Transformers are usually used for leakage current mitigation. However, this decreases the efficiency and increases the cost, size, and weight of the PV systems. Number of strategies have been introduced to mitigate the leakage current in transformer-less converters. Among these strategies, using common-ground converters is considered the most effective solution as it offers a solid connection between the negative terminal of PV modules and the neutral of the grid side; thus, complete mitigation of the leakage current is achieved. Number of common-ground inverters have been recently presented. These inverters are different in their size, cost, boosting capability, the possibility of producing DC currents, and their capability to offer multilevel shaping of output voltage. This work introduces a comprehensive review and classification for various common-ground PV inverters. Therefore, a clear picture of the advantages and disadvantages of these inverters is clarified. This provides a useful indication for a trade-off between gaining some of the advantages and losing others in PV systems. In addition, the potentials for optimization based on different performance indicators are identified.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3