Object Localization and Tracking System Using Multiple Ultrasonic Sensors with Newton–Raphson Optimization and Kalman Filtering Techniques

Author:

Juan Chung-WeiORCID,Hu Jwu-Sheng

Abstract

In this paper, an object localization and tracking system is implemented with an ultrasonic sensing technique and improved algorithms. The system is composed of one ultrasonic transmitter and five receivers, which uses the principle of ultrasonic ranging measurement to locate the target object. This system has several stages of locating and tracking the target object. First, a simple voice activity detection (VAD) algorithm is used to detect the ultrasonic echo signal of each receiving channel, and then a demodulation method with a low-pass filter is used to extract the signal envelope. The time-of-flight (TOF) estimation algorithm is then applied to the signal envelope for range measurement. Due to the variations of position, direction, material, size, and other factors of the detected object and the signal attenuation during the ultrasonic propagation process, the shape of the echo waveform is easily distorted, and TOF estimation is often inaccurate and unstable. In order to improve the accuracy and stability of TOF estimation, a new method of TOF estimation by fitting the general (GN) model and the double exponential (DE) model on the suitable envelope region using Newton–Raphson (NR) optimization with Levenberg–Marquardt (LM) modification (NRLM) is proposed. The final stage is the object localization and tracking. An extended Kalman filter (EKF) is designed, which inherently considers the interference and outlier problems of range measurement, and effectively reduces the interference to target localization under critical measurement conditions. The performance of the proposed system is evaluated by the experimental evaluation of conditions, such as stationary pen localization, stationary finger localization, and moving finger tracking. The experimental results verify the performance of the system and show that the system has a considerable degree of accuracy and stability for object localization and tracking.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3