Abstract
The Middle Eocene Climatic Optimum (MECO; ~40 Ma), which interrupted for ~500–600 kyr the long-term cooling trend culminating at the Eocene/Oligocene boundary, still requires a comprehensive understanding of the biotic resilience. Here we present a high-resolution integrated foraminiferal and calcareous nannofossil study across the MECO from the expanded and continuous Tethyan Baskil section (eastern Turkey) that offers a complete magneto-biostratigraphic and geochemical framework. The five MECO phases identified reveal a transition from oligotrophic (pre-MECO) to eu-mesotrophic conditions, possibly related to accelerated hydrological cycle, during the initial MECO and MECO δ13C negative excursion phases. The MECO WARMING PEAK phase, marking the highest carbonate dissolution interval, records the most striking biotic changes, such as peak in warm and eutrophic nannofossils, virtual disappearance of the oligotrophic planktic foraminiferal large Acarinina and Morozovelloides, and peak in eutrophic deep dwellers Subbotina. Benthic foraminifera suggest in this phase an improvement in the quality of organic matter to the seafloor. The post-MECO phase shows only a partial recovery of the pre-event conditions. Large Acarinina and Morozovelloides did not recover their abundance, possibly due to cooler conditions in this phase. Our reconstruction reveals how paleoenvironment and marine biota from the studied Neo-Tethyan setting reacted to the MECO perturbations.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献