High-Resolution LiDAR Digital Elevation Model Referenced Landslide Slide Observation with Differential Interferometric Radar, GNSS, and Underground Measurements

Author:

Wang Kuo-LungORCID,Lin Jun-Tin,Chu Hsun-Kuang,Chen Chao-Wei,Lu Chia-Hao,Wang Jyun-Yen,Lin Hsi-Hung,Chi Chung-Chi

Abstract

The area of Taiwan is 70% hillsides. In addition, the topography fluctuates wildly, and it is active in earthquakes and young orogenic movements. Landslides are a widespread disaster in Taiwan. However, landslides are not a disaster until someone enters the mountain area for development. Therefore, landslide displacement monitoring is the primary task of this study. Potential landslide areas with mostly slate geological conditions were selected as candidate sites in this study. The slate bedding in this area is approximately 30 to 75 degrees toward the southeast, which means that creep may occur due to gravity deformation caused by high-angle rock formation strikes. In addition, because the research site is located in a densely vegetated area, the data noise is very high, and it is not easy to obtain good results. This study chose ESA Sentinel-1 data for analysis and 1-m LiDAR DEM as reference elevation. The 1-m LiDAR DEM with high accuracy can help to detect more complex deformation from DInSAR. The Sentinel-1 series of satellites have a regular revisit period. In addition, the farm areas of roads, bridges, and buildings in the study area provided enough reflections to produce good coherence. Sentinel-1 images from March 2017 to June 2021 were analyzed, obtaining slope deformation and converting it to the vertical direction. Deformation derived from SAR is compared with other measurements, including GNSS and underground slope inclinometer. The SBAS solution process provides more DInSAR pairs to overcome the problem of tremendous noise and has increased accuracy. Moreover, the SBAS method’s parameter modification derives more candidate points in the vegetated area. The vertical deformation comparison between the GNSS installation location and the ascending SBAS solution’s vertical deformation is consistent. Moreover, the reliable facing of the slope toward the SAR satellite is discussed. Due to the limitations of the GNSS stations, this study proposes a method to convert the observed deformation from the slope inclinometer and convert it to vertical deformation. The displacement of the slope indicator is originally a horizontal displacement. It is assumed that it is fixed at the farthest underground, and the bottom-to-top movement is integrated with depth. The results show that the proposed equation to convert horizontal to vertical displacement fits well in this condition. The activity of landslides within the LiDAR digital elevation model identified as scars is also mapped.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3