Improving the Performance of Vietnamese–Korean Neural Machine Translation with Contextual Embedding

Author:

Vu Van-Hai,Nguyen Quang-Phuoc,Tunyan Ebipatei Victoria,Ock Cheol-Young

Abstract

With the recent evolution of deep learning, machine translation (MT) models and systems are being steadily improved. However, research on MT in low-resource languages such as Vietnamese and Korean is still very limited. In recent years, a state-of-the-art context-based embedding model introduced by Google, bidirectional encoder representations for transformers (BERT), has begun to appear in the neural MT (NMT) models in different ways to enhance the accuracy of MT systems. The BERT model for Vietnamese has been developed and significantly improved in natural language processing (NLP) tasks, such as part-of-speech (POS), named-entity recognition, dependency parsing, and natural language inference. Our research experimented with applying the Vietnamese BERT model to provide POS tagging and morphological analysis (MA) for Vietnamese sentences,, and applying word-sense disambiguation (WSD) for Korean sentences in our Vietnamese–Korean bilingual corpus. In the Vietnamese–Korean NMT system, with contextual embedding, the BERT model for Vietnamese is concurrently connected to both encoder layers and decoder layers in the NMT model. Experimental results assessed through BLEU, METEOR, and TER metrics show that contextual embedding significantly improves the quality of Vietnamese–Korean NMT.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Incorporating BERT into Neural Machine Translation;Zhu;arXiv,2020

2. ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations;Lan;arXiv,2020

3. RoBERTa: A Robustly Optimized BERT Pretraining Approach;Liu;arXiv,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3