Behavior of Non-Shear-Strengthened UHPC Beams under Flexural Loading: Influence of Reinforcement Percentage

Author:

Khan Mohammad IqbalORCID,Fares GalalORCID,Abbas Yassir M.ORCID,Alqahtani Fahad K.ORCID

Abstract

In the present work, the structural responses of 12 UHPC beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Improved safety could be obtained by optimizing the tensile reinforcement ratio (ρ) for a UHPC beam. The slope of the moment–curvature before and after steel yielding was almost typical for all beams due to the inclusion of a hybrid fibrous system in the UHPC. Moreover, we concluded that as ρ increases, the deflection ductility exponentially increases. The cracking response of the UHPC beams demonstrated that increasing ρ notably decreases the crack opening width of the UHPC beams at the same service loading. The cracking pattern the beams showed that increasing the bar reinforcement percentages notably enhanced their initial stiffness and deformability. Moreover, the flexural cracks were the main cause of failure for all beams; however, flexure shear cracks were observed in moderately reinforced beams. The prediction efficiency of the proposed analytical model was established by performing a comparative study on the experimental and analytical ultimate moment capacity of the UHPC beams. For all beams, the percentage of the mean calculated moment capacity to the experimentally observed capacity approached 100%.

Funder

This Project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. The path to ultra-high performance fiber reinforced concrete (UHP-FRC): Five decades of progress;Naaman,2012

2. Experimental and Analytical Investigations of a Locally Developed Ultrahigh-Performance Fiber-Reinforced Concrete

3. Performance Enhancement of Ultra-High-Performance Fiber-Reinforced Concrete and Model Development for Practical Utilization;Yoo,2014

4. Shear Behavior of Ultrahigh Performance Fiber-Reinforced Concrete Beams. I: Experimental Investigation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3