From When to When: Evaluating Naturalness of Reaction Time via Viewing Turn around Behaviors

Author:

Kubota AtsumuORCID,Kimoto Mitsuhiko,Iio TakamasaORCID,Shimohara Katsunori,Shiomi Masahiro

Abstract

This paper addresses the effects of visual reaction times of a turn around behavior toward touch stimulus in the context of perceived naturalness. People essentially prefer a quick and natural reaction time to interaction partners, but appropriate reaction times will change due to the kinds of partners, e.g., humans, computers, and robots. In this study, we investigate two visual reaction times in touch interaction: the time length from the touched timing to the start of a reaction behavior, and the time length of the reaction behavior. We also investigated appropriate reaction times for different beings: three robots (Sota, Nao and Pepper) and humans (male and female). We conducted a web-survey based experiment to investigate natural reaction times for robots and humans, and the results concluded that the best combinations of both reaction times are different between each robot (i.e., among Sota, Nao and Pepper) and the humans (i.e., between male and female). We also compared the effect of using the best combinations for each robot and human to prove the importance of using each appropriate reaction timing for each being. The results suggest that an appropriate reaction time combination investigated from the male model is not ideal for robots, and the combination investigated from the female model is a better choice for robots. Our study also suggests that calibrating parameters for individual robots’ behavior design would enable better performances than using parameters of robot behaviors based on observing human-human interaction, although such an approach is a typical method of robot behavior design.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3