Flutter Derivatives Identification and Uncertainty Quantification for Bridge Decks Based on the Artificial Bee Colony Algorithm and Bootstrap Technique

Author:

Feng Zhouquan,Lin Yang

Abstract

This paper presents a novel parameter identification and uncertainty quantification method for flutter derivatives estimation of bridge decks. The proposed approach is based on free-decay vibration records of a sectional model in wind tunnel tests, which consists of parameter identification by a heuristic optimization algorithm in the sense of weighted least squares and uncertainty quantification by a bootstrap technique. The novel contributions of the method are on three fronts. Firstly, weighting factors associated with vertical and torsional motion in the objective function are determined more reasonably using an iterative procedure rather than preassigned. Secondly, flutter derivatives are identified using a hybrid heuristic and classical optimization method, which integrates a modified artificial bee colony algorithm with the Powell’s algorithm. Thirdly, a statistical bootstrap technique is used to quantify the uncertainties of flutter derivatives. The advantages of the proposed method with respect to other methods are faster and more accurate achievement of the global optimum, and refined uncertainty quantification in the identified flutter derivatives. The effectiveness and reliability of the proposed method are validated through noisy data of a numerically simulated thin plate and experimental data of a bridge deck sectional model.

Funder

National Natural Science Foundation of China

the Education Department of Hunan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3