Simulation and Analysis of Grid Formation Method for UAV Clusters Based on the 3 × 3 Magic Square and the Chain Rules of Visual Reference

Author:

Qiao Rui,Xu Guili,Cheng YuehuaORCID,Ye Zhengyu,Huang Jinlong

Abstract

Large-scale unmanned aerial vehicle (UAV) formations are vulnerable to disintegration under electromagnetic interference and fire attacks. To address this issue, this work proposed a distributed formation method of UAVs based on the 3 × 3 magic square and the chain rules of visual reference. Enlightened by the biomimetic idea of the plane formation of starling flocks, this method adopts the technical means of airborne vision and a cooperative target. The topological structure of the formation’s visual reference network showed high static stability under the measurement of the network connectivity index. In addition, the dynamic self-healing ability of this network was analyzed. Finally, a simulation of a battlefield using matlab showed that, when the loss of UAVs reaches 85% for formations with different scales, the UAVs breaking formation account for 5.1–6% of the total in the corresponding scale, and those keeping formation account for 54.4–65.7% of the total undestroyed fleets. The formation method designed in this paper can maintain the maximum number of UAVs in formation on the battlefield.

Funder

National Key Research and Development Plan

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Unmanned Aerial Vehicle Swarm Autonomous Control Based on Swarm Intelligence;Duan,2018

2. Controlling formations of multiple mobile robots

3. Trajectory design and control for aggressive formation flight with quadrotors

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Issue on Unmanned Aerial Vehicles;Applied Sciences;2023-03-24

2. Research on a new improved UAV anti-jamming and optimization model;Third International Conference on Computer Science and Communication Technology (ICCSCT 2022);2022-12-29

3. MSGWO-MKL-SVM: A Missing Link Prediction Method for UAV Swarm Network Based on Time Series;Mathematics;2022-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3