Applying Machine Learning Models to First Responder Collisions Beside Roads: Insights from “Two Vehicles Hit a Parked Motor Vehicle” Data

Author:

Tofighi MohammadaliORCID,Asgary AliORCID,Tofighi Ghassem,Podloski Brady,Cronemberger Felippe,Mukherjee Abir,Liu Xia

Abstract

First responders including firefighters, paramedics, and police officers are among the first to respond to vehicle collisions on roads and highways. Police officers conduct regular roadside Please check if the country name is correct traffic controls and checks on urban and rural roads, and highways. Once first responders begin such operations, they are vulnerable to motor vehicle collisions by oncoming traffic, a circumstance that calls for a better understanding of contributing factors and the extent to which they affect tragic outcomes. In light of factors identified in the literature, this paper applies machine learning methods including decision tree and random forest to a subset of the National Collision Database (NCDB) of Canada that includes information on collisions between two vehicles (one in parked position) and the severity of these collisions as measured by having or not having injuries. Findings reveal that key measurable, predictable, and sensible factors such as time, location, and weather conditions, as well as the interconnections among them, can explain the severity of collisions that may happen between motor vehicles and first responders who are working alongside the roads. Analysis from longitudinal data is rich and the use of automated methods can be used to predict and assess the risk and vulnerability of first responders while responding to or operating on different roads and conditions.

Funder

Defence Research and Development Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Best Practices for Emergency Vehicle and Roadway Operations Safety in the Emergency Services,2010

2. Risk factors for injury in law enforcement officer vehicle crashes

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3