Abstract
The industrial revolutions and their impact on production systems have increased productivity and quality in manufacturing over time. Lean methods have been the driver of the development of production systems from the 1990s to the rise of the fourth industrial revolution, or Industry 4.0. However, many different approaches and methodologies have been described, applied, and discussed for achieving improvements in production systems. As a result, organizations are often confused in regard to the order, the convenience, and the outcomes intended by the different improvement strategies and techniques. This paper provides a systematic sequence of process optimization steps that can be applied to any organization. A conceptual model was built based on the systematic sequence. In addition, a simulation model was built with the goal of representing and quantifying the sequential steps of the conceptual model. The results of the simulation model show a clear improvement in quality, performance, and economic indicators, with the first two steps in the optimization sequence providing critical initial information, while the three last steps served as net contributors to a global production system improvement for demanding market scenarios. Finally, we analyzed the impacts of Industry 4.0 on production systems and developed a methodological sequence to design, select, implement, and control projects, even those that include Industry 4.0 technologies.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献