A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy

Author:

Fu Wenlong,Wang Kai,Zhou Jianzhong,Xu Yanhe,Tan JiawenORCID,Chen Tie

Abstract

Accurate wind speed prediction plays a significant role in reasonable scheduling and the safe operation of the power system. However, due to the non-linear and non-stationary traits of the wind speed time series, the construction of an accuracy forecasting model is difficult to achieve. To this end, a novel synchronous optimization strategy-based hybrid model combining multi-scale dominant ingredient chaotic analysis and a kernel extreme learning machine (KELM) is proposed, for which the multi-scale dominant ingredient chaotic analysis integrates variational mode decomposition (VMD), singular spectrum analysis (SSA) and phase-space reconstruction (PSR). For such a hybrid structure, the parameters in VMD, SSA, PSR and KELM that would affect the predictive performance are optimized by the proposed improved hybrid grey wolf optimizer-sine cosine algorithm (IHGWOSCA) synchronously. To begin with, VMD is employed to decompose the raw wind speed data into a set of sub-series with various frequency scales. Later, the extraction of dominant and residuary ingredients for each sub-series is implemented by SSA, after which, all of the residuary ingredients are accumulated with the residual of VMD, to generate an additional forecasting component. Subsequently, the inputs and outputs of KELM for each component are deduced by PSR, with which the forecasting model could be constructed. Finally, the ultimate forecasting values of the raw wind speed are calculated by accumulating the predicted results of all the components. Additionally, four datasets from Sotavento Galicia (SG) wind farm have been selected, to achieve the performance assessment of the proposed model. Furthermore, six relevant models are carried out for comparative analysis. The results illustrate that the proposed hybrid framework, VMD-SSA-PSR-KELM could achieve a better performance compared with other combined models, while the proposed synchronous parameter optimization strategy-based model could achieve an average improvement of 25% compared to the separated optimized VMD-SSA-PSR-KELM model.

Funder

National Natural Science Foundation of China

Hubei Provincial Major Project for Technical Innovation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven Prediction Model Selection Considering Time Series Characteristics of Wind Speed;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

2. Multistep Time Series Forecasting of Energy Consumption Based on Stacked Deep LSTM Network Architecture;Communications in Computer and Information Science;2024

3. Multi‐Step Forecasting for Household Power Consumption;IEEJ Transactions on Electrical and Electronic Engineering;2023-06-05

4. High Precision IGBT Health Evaluation Method: Extreme Learning Machine Optimized by Improved Krill Herd Algorithm;IEEE Transactions on Device and Materials Reliability;2023-03

5. Two-Stage Decomposition Multi-Scale Nonlinear Ensemble Model with Error-Correction-Coupled Gaussian Process for Wind Speed Forecast;Atmosphere;2023-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3