User-Centered Pipeline for Synthetic Augmentation of Anomaly Detection Datasets

Author:

Rosbak-Mortensen Alexander1,Jansen Marco1,Muhlig Morten1,Kristensen Tøt Mikkel Bjørndahl1,Nikolov Ivan1ORCID

Affiliation:

1. Department of Architecture, Design and Media Technology, Faculty of Science, Aalborg University, Rendsburggade 14, DK-9000 Aalborg, Denmark

Abstract

Automatic anomaly detection plays a critical role in surveillance systems but requires datasets comprising large amounts of annotated data to train and evaluate models. Gathering and annotating these data is a labor-intensive task that can become costly. A way to circumvent this is to use synthetic data to augment anomalies directly into existing datasets. This far more diverse scenario can be created and come directly with annotations. This however also poses new issues for the computer-vision engineer and researcher end users, who are not readily familiar with 3D modeling, game development, or computer graphics methodologies and must rely on external specialists to use or tweak such pipelines. In this paper, we extend our previous work of an application that synthesizes dataset variations using 3D models and augments anomalies on real backgrounds using the Unity Engine. We developed a high-usability user interface for our application through a series of RITE experiments and evaluated the final product with the help of deep-learning specialists who provided positive feedback regarding its usability, accessibility, and user experience. Finally, we tested if the proposed solution can be used in the context of traffic surveillance by augmenting the train data from the challenging Street Scene dataset. We found that by using our synthetic data, we could achieve higher detection accuracy. We also propose the next steps to expand the proposed solution for better usability and render accuracy through the use of segmentation pre-processing.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3