Modeling Seasonality of Emotional Tension in Social Media

Author:

Nosov Alexey1ORCID,Kuznetsova Yulia1ORCID,Stankevich Maksim1ORCID,Smirnov Ivan1ORCID,Grigoriev Oleg1ORCID

Affiliation:

1. Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 119333 Moscow, Russia

Abstract

Social media has become an almost unlimited resource for studying social processes. Seasonality is a phenomenon that significantly affects many physical and mental states. Modeling collective emotional seasonal changes is a challenging task for the technical, social, and humanities sciences. This is due to the laboriousness and complexity of obtaining a sufficient amount of data, processing and evaluating them, and presenting the results. At the same time, understanding the annual dynamics of collective sentiment provides us with important insights into collective behavior, especially in various crises or disasters. In our study, we propose a scheme for identifying and evaluating signs of the seasonal rise and fall of emotional tension based on social media texts. The analysis is based on Russian-language comments in VKontakte social network communities devoted to city news and the events of a small town in the Nizhny Novgorod region, Russia. Workflow steps include a statistical method for categorizing data, exploratory analysis to identify common patterns, data aggregation for modeling seasonal changes, the identification of typical data properties through clustering, and the formulation and validation of seasonality criteria. As a result of seasonality modeling, it is shown that the calendar seasonal model corresponds to the data, and the dynamics of emotional tension correlate with the seasons. The proposed methodology is useful for a wide range of social practice issues, such as monitoring public opinion or assessing irregular shifts in mass emotions.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3