COTS-Based Real-Time System Development: An Effective Application in Pump Motor Control

Author:

Adam George K.ORCID,Petrellis NikosORCID,Kontaxis Panagiotis A.ORCID,Stylianos Tilemachos

Abstract

The progress of embedded control systems in the last several years has made possible the realization of highly-effective controllers in many domains. It is essential for such systems to provide effective performance at an affordable cost. Furthermore, real-time embedded control systems must have low energy consumption, as well as be reliable and timely. This research investigates primarily the feasibility of implementing an embedded real-time control system, based on a low-cost, commercially off-the-shelf (COTS) microcontroller platform. It explores real-time issues, such as the reliability and timely response, of such a system implementation. This work presents the development and performance evaluation of a novel real-time control architecture, based upon a BeagleBoard microcontroller, and applied into the PWM (pulse width modulation) control of a three-phase induction motor in a suction pump. The approach followed makes minimal use of general-purpose hardware (BeagleBone Black microcontroller board) and open-source software components (including Linux Operating System with PREEMPT_RT real-time support) for building a reliable real-time control system. The applicability of the proposed control system architecture is validated and evaluated in a real case study in manufacturing. The results provide sufficient evidence of the efficiency and reliability of the proposed approach into the development of a real-time control system based upon COTS components.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference43 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3