An ML-Powered Risk Assessment System for Predicting Prospective Mass Shooting

Author:

Ahmed Ahmed Abdelmoamen1ORCID,Okoroafor Nneoma1

Affiliation:

1. Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA

Abstract

The United States has had more mass shooting incidents than any other country. It is reported that more than 1800 incidents occurred in the US during the past three years. Mass shooters often display warning signs before committing crimes, such as childhood traumas, domestic violence, firearms access, and aggressive social media posts. With the advancement of machine learning (ML), it is more possible than ever to predict mass shootings before they occur by studying the behavior of prospective mass shooters. This paper presents an ML-based system that uses various unsupervised ML models to warn about a balanced progressive tendency of a person to commit a mass shooting. Our system used two models, namely local outlier factor and K-means clustering, to learn both the psychological factors and social media activities of previous shooters to provide a probabilistic similarity of a new observation to an existing shooter. The developed system can show the similarity between a new record for a prospective shooter and one or more records from our dataset via a GUI-friendly interface. It enables users to select some social and criminal observations about the prospective shooter. Then, the webpage creates a new record, classifies it, and displays the similarity results. Furthermore, we developed a feed-in module, which allows new observations to be added to our dataset and retrains the ML models. Finally, we evaluated our system using various performance metrics.

Funder

the National Science Foundation

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3