Forest Defender Fusion System for Early Detection of Forest Fires

Author:

Ibraheem Manar Khalid Ibraheem1,Mohamed Mbarka Belhaj2,Fakhfakh Ahmed3ORCID

Affiliation:

1. Laboratory of Signals, Systems, Artificial Intelligence and Networks (SM@RTS), Digital Research Center of Sfax (CRNS), National School of Engineers of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia

2. Laboratory of Signals, Systems, Artificial Intelligence and Networks (SM@RTS), Digital Research Center of Sfax (CRNS), National School of Engineers of Gabes (ENIG), University of Sfax, Gabes 6029, Tunisia

3. Laboratory of Signals, Systems, Artificial Intelligence and Networks (SM@RTS), Digital Research Center of Sfax (CRNS), National School of Electronics and Telecommunications of Sfax (ENET’Com), University of Sfax, Sfax 1163, Tunisia

Abstract

In the past ten years, rates of forest fires around the world have increased significantly. Forest fires greatly affect the ecosystem by damaging vegetation. Forest fires are caused by several causes, including both human and natural causes. Human causes lie in intentional and irregular burning operations. Global warming is a major natural cause of forest fires. The early detection of forest fires reduces the rate of their spread to larger areas by speeding up their extinguishing with the help of equipment and materials for early detection. In this research, an early detection system for forest fires is proposed called Forest Defender Fusion. This system achieved high accuracy and long-term monitoring of the site by using the Intermediate Fusion VGG16 model and Enhanced Consumed Energy-Leach protocol (ECP-LEACH). The Intermediate Fusion VGG16 model receives RGB (red, green, blue) and IR (infrared) images from drones to detect forest fires. The Forest Defender Fusion System provides regulation of energy consumption in drones and achieves high detection accuracy so that forest fires are detected early. The detection model was trained on the FLAME 2 dataset and obtained an accuracy of 99.86%, superior to the rest of the models that track the input of RGB and IR images together. A simulation using the Python language to demonstrate the system in real time was performed.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3