Novel Deep Feature Fusion Framework for Multi-Scenario Violence Detection

Author:

Jebur Sabah Abdulazeez12,Hussein Khalid A.3ORCID,Hoomod Haider Kadhim3,Alzubaidi Laith45ORCID

Affiliation:

1. Department of Computer Sciences, University of Technology, Baghdad 00964, Iraq

2. Department of Computer Techniques Engineering, Imam Al-Kadhum College (IKC), Baghdad 00964, Iraq

3. Department of Computer Science, College of Education, Mustansiriyah University, Baghdad 00964, Iraq

4. School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia

5. Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia

Abstract

Detecting violence in various scenarios is a difficult task that requires a high degree of generalisation. This includes fights in different environments such as schools, streets, and football stadiums. However, most current research on violence detection focuses on a single scenario, limiting its ability to generalise across multiple scenarios. To tackle this issue, this paper offers a new multi-scenario violence detection framework that operates in two environments: fighting in various locations and rugby stadiums. This framework has three main steps. Firstly, it uses transfer learning by employing three pre-trained models from the ImageNet dataset: Xception, Inception, and InceptionResNet. This approach enhances generalisation and prevents overfitting, as these models have already learned valuable features from a large and diverse dataset. Secondly, the framework combines features extracted from the three models through feature fusion, which improves feature representation and enhances performance. Lastly, the concatenation step combines the features of the first violence scenario with the second scenario to train a machine learning classifier, enabling the classifier to generalise across both scenarios. This concatenation framework is highly flexible, as it can incorporate multiple violence scenarios without requiring training from scratch with additional scenarios. The Fusion model, which incorporates feature fusion from multiple models, obtained an accuracy of 97.66% on the RLVS dataset and 92.89% on the Hockey dataset. The Concatenation model accomplished an accuracy of 97.64% on the RLVS and 92.41% on the Hockey datasets with just a single classifier. This is the first framework that allows for the classification of multiple violent scenarios within a single classifier. Furthermore, this framework is not limited to violence detection and can be adapted to different tasks.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3