On Predicting Exam Performance Using Version Control Systems’ Features

Author:

Canale Lorenzo12ORCID,Cagliero Luca1ORCID,Farinetti Laura1ORCID,Torchiano Marco1ORCID

Affiliation:

1. Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

2. Centre for Research and Technological Innovation, Radiotelevisione Italiana (RAI), Via Giovanni Carlo Cavalli 6, 10129 Torino, Italy

Abstract

The advent of Version Control Systems (VCS) in computer science education has significantly improved the learning experience. The Learning Analytics community has started to analyze the interactions between students and VCSs to evaluate the behavioral and cognitive aspects of the learning process. Within the aforesaid scope, a promising research direction is the use of Artificial Intelligence (AI) to predict students’ exam outcomes early based on VCS usage data. Previous AI-based solutions have two main drawbacks: (i) They rely on static models, which disregard temporal changes in the student–VCS interactions. (ii) AI reasoning is not transparent to end-users. This paper proposes a time-dependent approach to early predict student performance from VCS data. It applies and compares different classification models trained at various course stages. To gain insights into exam performance predictions it combines classification with explainable AI techniques. It visualizes the explanations of the time-varying performance predictors. The results of a real case study show that the effect of VCS-based features on the exam success rate is relevant much earlier than the end of the course, whereas the timely submission of the first lab assignment is a reliable predictor of the exam grade.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3