SENSIPLUS-LM: A Low-Cost EIS-Enabled Microchip Enhanced with an Open-Source Tiny Machine Learning Toolchain

Author:

Vitelli MicheleORCID,Cerro GianniORCID,Gerevini LucaORCID,Miele GianfrancoORCID,Ria AndreaORCID,Molinara MarioORCID

Abstract

The technological step towards sensors’ miniaturization, low-cost platforms, and evolved communication paradigms is rapidly moving the monitoring and computation tasks to the edge, causing the joint use of the Internet of Things (IoT) and machine learning (ML) to be massively employed. Edge devices are often composed of sensors and actuators, and their behavior depends on the relative rapid inference of specific conditions. Therefore, the computation and decision-making processes become obsolete and ineffective by communicating raw data and leaving them to a centralized system. This paper responds to this need by proposing an integrated architecture, able to host both the sensing part and the learning and classifying mechanisms, empowered by ML, directly on board and thus able to overcome some of the limitations presented by off-the-shelf solutions. The presented system is based on a proprietary platform named SENSIPLUS, a multi-sensor device especially devoted to performing electrical impedance spectroscopy (EIS) on a wide frequency interval. The measurement acquisition, data processing, and embedded classification techniques are supported by a system capable of generating and compiling code automatically, which uses a toolchain to run inference routines on the edge. As a case study, the system capabilities of such a platform in this work are exploited for water quality assessment. The joint system, composed of the measurement platform and the developed toolchain, is named SENSIPLUS-LM, standing for SENSIPLUS learning machine. The introduction of the toolchain empowers the SENSIPLUS platform moving the inference phase of the machine learning algorithm to the edge, thus limiting the needs of external computing platforms. The software part, i.e., the developed toolchain, is available for free download from GitLab, as reported in this paper.

Funder

European Unions Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3