Spatial Impressions Monitoring during COVID-19 Pandemic Using Machine Learning Techniques

Author:

Noor Talal H.,Almars AbdulqaderORCID,Gad Ibrahim,Atlam El-SayedORCID,Elmezain MahmoudORCID

Abstract

During the COVID-19 epidemic, Twitter has become a vital platform for people to express their impressions and feelings towards the COVID-19 epidemic. There is an unavoidable need to examine various patterns on social media platforms in order to reduce public anxiety and misconceptions. Based on this study, various public service messages can be disseminated, and necessary steps can be taken to manage the scourge. There has already been a lot of work conducted in several languages, but little has been conducted on Arabic tweets. The primary goal of this study is to analyze Arabic tweets about COVID-19 and extract people’s impressions of different locations. This analysis will provide some insights into understanding public mood variation on Twitter, which could be useful for governments to identify the effect of COVID-19 over space and make decisions based on that understanding. To achieve that, two strategies are used to analyze people’s impressions from Twitter: machine learning approach and the deep learning approach. To conduct this study, we scraped Arabic tweets up with 12,000 tweets that were manually labeled and classify them as positive, neutral or negative feelings. Specialising in Saudi Arabia, the collected dataset consists of 2174 positive tweets and 2879 negative tweets. First, TF-IDF feature vectors are used for feature representation. Then, several models are implemented to identify people’s impression over time using Twitter Geo-tag information. Finally, Geographic Information Systems (GIS) are used to map the spatial distribution of people’s emotions and impressions. Experimental results show that SVC outperforms other methods in terms of performance and accuracy.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference42 articles.

1. World Meterhttps://www.worldometers.info/coronavirus/

2. Coronavirus Impact Index by Industryhttps://www.statista.com/statistics/1106302/coronavirus-impact-index-by-industry-2020/

3. When the Going Gets Tough, the Tweets Get Going! An Exploratory Analysis of Tweets Sentiments in the Stock Market;Kretinin;Am. J. Manag.,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3