Abstract
During the COVID-19 epidemic, Twitter has become a vital platform for people to express their impressions and feelings towards the COVID-19 epidemic. There is an unavoidable need to examine various patterns on social media platforms in order to reduce public anxiety and misconceptions. Based on this study, various public service messages can be disseminated, and necessary steps can be taken to manage the scourge. There has already been a lot of work conducted in several languages, but little has been conducted on Arabic tweets. The primary goal of this study is to analyze Arabic tweets about COVID-19 and extract people’s impressions of different locations. This analysis will provide some insights into understanding public mood variation on Twitter, which could be useful for governments to identify the effect of COVID-19 over space and make decisions based on that understanding. To achieve that, two strategies are used to analyze people’s impressions from Twitter: machine learning approach and the deep learning approach. To conduct this study, we scraped Arabic tweets up with 12,000 tweets that were manually labeled and classify them as positive, neutral or negative feelings. Specialising in Saudi Arabia, the collected dataset consists of 2174 positive tweets and 2879 negative tweets. First, TF-IDF feature vectors are used for feature representation. Then, several models are implemented to identify people’s impression over time using Twitter Geo-tag information. Finally, Geographic Information Systems (GIS) are used to map the spatial distribution of people’s emotions and impressions. Experimental results show that SVC outperforms other methods in terms of performance and accuracy.
Subject
Computer Networks and Communications,Human-Computer Interaction
Reference42 articles.
1. World Meterhttps://www.worldometers.info/coronavirus/
2. Coronavirus Impact Index by Industryhttps://www.statista.com/statistics/1106302/coronavirus-impact-index-by-industry-2020/
3. When the Going Gets Tough, the Tweets Get Going! An Exploratory Analysis of Tweets Sentiments in the Stock Market;Kretinin;Am. J. Manag.,2018
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献