Distributed Attack Deployment Capability for Modern Automated Penetration Testing

Author:

Hance Jack,Milbrath Jordan,Ross Noah,Straub Jeremy

Abstract

Cybersecurity is an ever-changing landscape. The threats of the future are hard to predict and even harder to prepare for. This paper presents work designed to prepare for the cybersecurity landscape of tomorrow by creating a key support capability for an autonomous cybersecurity testing system. This system is designed to test and prepare critical infrastructure for what the future of cyberattacks looks like. It proposes a new type of attack framework that provides precise and granular attack control and higher perception within a set of infected infrastructure. The proposed attack framework is intelligent, supports the fetching and execution of arbitrary attacks, and has a small memory and network footprint. This framework facilitates autonomous rapid penetration testing as well as the evaluation of where detection systems and procedures are underdeveloped and require further improvement in preparation for rapid autonomous cyber-attacks.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the Application of Penetration Testing Frameworks in Blockchain Security;Mechanisms and Machine Science;2024

2. Enhancing Web Application Security through Automated Penetration Testing with Multiple Vulnerability Scanners;Computers;2023-11-15

3. Implementation of Distributed Attack Penetration Testing Automation Using Dynamic Infrastructure Framework Axiom on Web-Based Systems;2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS);2023-11-07

4. Development of an Autonomous Retesting Penetration Testing Paradigm;2022 International Conference on Computational Science and Computational Intelligence (CSCI);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3