Scalable Traffic Signal Controls Using Fog-Cloud Based Multiagent Reinforcement Learning

Author:

Ha Paul (Young Joun)ORCID,Chen Sikai,Du RunjiaORCID,Labi Samuel

Abstract

Optimizing traffic signal control (TSC) at intersections continues to pose a challenging problem, particularly for large-scale traffic networks. It has been shown in past research that it is feasible to optimize the operations of individual TSC systems or a small collection of such systems. However, it has been computationally difficult to scale these solution approaches to large networks partly due to the curse of dimensionality that is encountered as the number of intersections increases. Fortunately, recent studies have recognized the potential of exploiting advancements in deep and reinforcement learning to address this problem, and some preliminary successes have been achieved in this regard. However, facilitating such intelligent solution approaches may require large amounts of infrastructure investments such as roadside units (RSUs) and drones, to ensure that connectivity is available across all intersections in the large network. This represents an investment that may be burdensome for the road agency. As such, this study builds on recent work to present a scalable TSC model that may reduce the number of enabling infrastructure that is required. This is achieved using graph attention networks (GATs) to serve as the neural network for deep reinforcement learning. GAT helps to maintain the graph topology of the traffic network while disregarding any irrelevant information. A case study is carried out to demonstrate the effectiveness of the proposed model, and the results show much promise. The overall research outcome suggests that by decomposing large networks using fog nodes, the proposed fog-based graphic RL (FG-RL) model can be easily applied to scale into larger traffic networks.

Funder

U.S. Department of Transportation

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference32 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3