State Estimation and Localization Based on Sensor Fusion for Autonomous Robots in Indoor Environment

Author:

Doumbia MamadouORCID,Cheng Xu

Abstract

Currently, almost all robot state estimation and localization systems are based on the Kalman filter (KF) and its derived methods, in particular the unscented Kalman filter (UKF). When applying the UKF alone, the estimate of the state is not sufficiently precise. In this paper, a new hierarchical infrared navigational algorithm hybridization (HIRNAH) system is developed to provide better state estimation and localization for mobile robots. Two navigation subsystems (inertial navigation system (INS) and, using a novel infrared navigation algorithm (NIRNA), Odom-NIRNA) and an RPLIDAR-A3 scanner cooperation to build HIRNAH. The robot pose (position and orientation) errors are estimated by a system filtering module (SFM) and used to smooth the robot’s final poses. A prototype (two rotary encoders, one smartphone-based robot sensing model and one RPLIDAR-A3 scanner) has been built and mounted on a four-wheeled mobile robot (4-WMR). Simulation results have motivated real-life experiments, and obtained results are compared to some existent research (hardware and control technology navigation (HCTNav), rapid exploring random tree (RRT) and in stand-alone mode (INS)) for performance measurements. The experimental results confirm that HIRNAH presents a more accurate estimation and a lower mean square error (MSE) of the robot’s state than those calculated by the previously cited HCTNav, RRT and INS.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3